首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   679篇
  免费   119篇
  国内免费   60篇
测绘学   10篇
大气科学   40篇
地球物理   316篇
地质学   288篇
海洋学   66篇
天文学   2篇
综合类   29篇
自然地理   107篇
  2024年   3篇
  2023年   5篇
  2022年   14篇
  2021年   28篇
  2020年   36篇
  2019年   32篇
  2018年   28篇
  2017年   28篇
  2016年   28篇
  2015年   34篇
  2014年   52篇
  2013年   71篇
  2012年   50篇
  2011年   39篇
  2010年   37篇
  2009年   45篇
  2008年   43篇
  2007年   33篇
  2006年   32篇
  2005年   33篇
  2004年   17篇
  2003年   26篇
  2002年   19篇
  2001年   15篇
  2000年   15篇
  1999年   4篇
  1998年   10篇
  1997年   19篇
  1996年   3篇
  1995年   6篇
  1994年   9篇
  1993年   6篇
  1992年   10篇
  1991年   4篇
  1990年   6篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   6篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1976年   1篇
排序方式: 共有858条查询结果,搜索用时 15 毫秒
21.
黄河上游径流预报的灰色拓扑方法   总被引:5,自引:6,他引:5  
蓝永超  杨文华 《冰川冻土》1997,19(4):308-311
以龙羊峡水库年平均入库流量预报为例,根据灰色系统理论的建模方法,利用龙羊峡水库入库水量代表站唐乃亥水文站的实测径流资料,建立了一个GM(1,1)拓扑预测模型,用于黄河上游径流的长期预报,并取得了较为满意的结果。  相似文献   
22.
三江源地区气候变化及其对生态环境的影响   总被引:30,自引:2,他引:30  
李林  朱西德  周陆生  汪青春 《气象》2004,30(8):18-22
利用EOF等方法通过计算 1 96 2~ 2 0 0 1年 4 0年来三江源地区 1 6个气象台站气温、降水、蒸发资料 ,分析了三江源地区近 4 0年来气候变化的异常特征及其对生态环境的影响 ,结果表明 :三江源地区气候变化表现为气温升高、降水减少和蒸发增大的干旱化气候变化趋势 ,同时 ,在气候干旱化和人为活动的影响下出现了草场退化、湖泊萎缩、河流流量减少、土壤沙化和水土流失等生态环境荒漠化问题。  相似文献   
23.
A quantitative, three‐dimensional depositional model of gravelly, braided rivers has been developed based largely on the deposits of the Sagavanirktok River in northern Alaska. These deposits were described using cores, wireline logs, trenches and ground‐penetrating radar profiles. The origin of the deposits was inferred from observations of: (1) channel and bar formation and migration and channel filling, interpreted from aerial photographs; (2) water flow during floods; and (3) the topography and texture of the river bed at low‐flow stage. This depositional model quantitatively represents the geometry of the different scales of strataset, the spatial relationships among them and their sediment texture distribution. Porosity and permeability in the model are related to sediment texture. The geometry of a particular type and scale of strataset is related to the geometry and migration of the bedform type (e.g. ripples, dunes, bedload sheets, bars) associated with deposition of the strataset. In particular, the length‐to‐thickness ratio of stratasets is similar to the wavelength‐to‐height ratio of associated bedforms. Furthermore, the wavelength and height of bedforms such as dunes and bars are related to channel depth and width. Therefore, the thickness of a particular scale of strataset (i.e. medium‐scale cross‐sets and large‐scale sets of inclined strata) will vary with river dimensions. These relationships between the dimensions of stratasets, bedforms and channels mean that this depositional model can be applied to other gravelly fluvial deposits. The depositional model can be used to interpret the origin of ancient gravelly fluvial deposits and to aid in the characterization of gravelly fluvial aquifers and hydrocarbon reservoirs.  相似文献   
24.
贡嘎山东坡海螺沟的河川径流特征   总被引:4,自引:1,他引:4  
对贡嘎山高山水文观测试验系统进行了简要介绍,并对海螺沟冰川河以及黄崩溜沟的径流特征进行了初步探讨。由于大气降水同是冰川河及黄崩溜沟径流的重要补给来源,故其径流量的季节变化明显带有大气降水过程的烙印,显得丰、枯分明。在冰川河,冰雪融水和地下水在枯水季节的稳定补给改变了大气降水对冰川河径流的年内分配过程;在黄崩溜沟,由于冰雪融水和地下水对其径流的补给非常有限,大气降水过程对其径流过程的影响便明显大过冰川河。  相似文献   
25.
The distribution of Sarcocornia pillansii (Moss) A.J. Scott was determined by water-table depth and electrical conductivity (EC) of the groundwater. Where the groundwater was accessible (<1.5 m) and had a low EC (<80 mS cm−1), S. pillansii extended its roots down to the water-table where a suitable water potential gradient was shown to exist between the soil and roots. In areas where the groundwater was too deep and/or hypersaline, the plants grew on hummocks. The unconfined aquifer below the floodplain is linked to the estuary and although diurnal tidal waves were dampened, water-table level fluctuations were recorded between tidal events. The complex geomorphology of the floodplain influences groundwater flow, in turn affecting the distribution of the salt marsh vegetation.  相似文献   
26.
Late Quaternary alluvial induration has greatly influenced contemporary channel morphology on the anabranching Gilbert River in the monsoon tropics of the Gulf of Carpentaria. The Gilbert, one of a number of rivers in this region, has contributed to an extensive system of coalescing low-gradient and partly indurated riverine plains. Extensive channel sands were deposited by enhanced flow conditions during marine oxygen isotope (OI) Stage 5. Subsequent flow declined, probably associated with increased aridity, however, enhanced runoff recurred again in OI Stages 4–3 (65–50 ka). Aridity then capped these plains with 4–7 m of mud. A widespread network of sandy distributary channels was incised into this muddy surface from sometime after the Last Glacial Maximum (LGM) to the mid Holocene during a fluvial episode more active than the present but less so than those of OI Stages 5 and 3. This network is still partly active but with channel avulsion and abandonment now occurring largely proximal to the main Gilbert flow path.A tropical climate and reactive catchment lithology have enhanced chemical weathering and lithification of alluvium along the river resulting in the formation of small rapids, waterfalls and inset gorges, features characteristic more of bedrock than alluvial systems. Thermoluminescence (TL) and comparative optically stimulated luminescence (OSL) ages of the sediments are presented along with U/Th ages of pedogenic calcrete and Fe/Mn oxyhydroxide/ oxide accumulations. They show that calcrete precipitated during the Late Quaternary at times similar to those that favoured ferricrete formation, possibly because of an alternating wet–dry climate. Intense chemical alteration of the alluvium leading to induration appears to have prevailed for much of the Late Quaternary but, probably due to exceptional dryness, not during the LGM. The result has been restricted channel migration and a reduced capacity for the channel to adjust and accommodate sudden changes in bedload. Consequent avulsions have caused local stream powers to increase by an order of magnitude, inducing knickpoint erosion, local incision and the sudden influx of additional bedload that has triggered further avulsions. The Gilbert River, while less energetic than its Pleistocene ancestors, is clearly an avulsive system, and emphasizes the importance in some tropical rivers of alluvial induration for reinforcing the banks, generating nickpoints, reworking sediment and thereby developing and maintaining an indurated and anabranching river style.  相似文献   
27.
Multi‐step ahead inflow forecasting has a critical role to play in reservoir operation and management in Taiwan during typhoons as statutory legislation requires a minimum of 3‐h warning to be issued before any reservoir releases are made. However, the complex spatial and temporal heterogeneity of typhoon rainfall, coupled with a remote and mountainous physiographic context, makes the development of real‐time rainfall‐runoff models that can accurately predict reservoir inflow several hours ahead of time challenging. Consequently, there is an urgent, operational requirement for models that can enhance reservoir inflow prediction at forecast horizons of more than 3 h. In this paper, we develop a novel semi‐distributed, data‐driven, rainfall‐runoff model for the Shihmen catchment, north Taiwan. A suite of Adaptive Network‐based Fuzzy Inference System solutions is created using various combinations of autoregressive, spatially lumped radar and point‐based rain gauge predictors. Different levels of spatially aggregated radar‐derived rainfall data are used to generate 4, 8 and 12 sub‐catchment input drivers. In general, the semi‐distributed radar rainfall models outperform their less complex counterparts in predictions of reservoir inflow at lead times greater than 3 h. Performance is found to be optimal when spatial aggregation is restricted to four sub‐catchments, with up to 30% improvements in the performance over lumped and point‐based models being evident at 5‐h lead times. The potential benefits of applying semi‐distributed, data‐driven models in reservoir inflow modelling specifically, and hydrological modelling more generally, are thus demonstrated. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
28.
以水利益共享代替分水的理念有利于充分发挥水资源效益和减少区域矛盾冲突,但由于缺乏具体可实施的分配模式一直停留在设想阶段。基于水利益共享理念,建立跨境流域水资源多目标分配指标体系,并结合澜沧江-湄公河流域跨境水资源利用现状及需求,提出澜沧江-湄公河流域跨境水资源多目标分配模型。为基于水利益共享的跨境水资源多目标分配提供了具有充分可操作性的指标体系和分配模型,有助于推进跨境流域水利益共享的实施,实现区域双边或多边在水资源利用上的共赢和发展目标。  相似文献   
29.
Surface water oxygen and hydrogen isotopic values are commonly used as proxies of precipitation isotopic values to track modern hydrologic processes while proxies of water isotopic values preserved in lake and river sediments are used for paleoclimate and paleoaltimetry studies. Previous work has been able to explain variability in USA river‐water and meteoric‐precipitation oxygen isotope variability with geographic variables. These studies show that in the western United States, river‐water isotopic values are depleted relative to precipitation values. In comparison, the controls on lake‐water isotopic values are not well constrained. It has been documented that western United States lake‐water input values, unlike river water, reflect the monthly weighted mean isotopic value of precipitation. To understand the differing controls on lake‐ and river‐water isotopic values in the western United States, we examine the seasonal distribution of precipitation, evaporation and snowmelt across a range of seasonality regimes. We generate new predictive equations based on easily measured factors for western United States lake‐water, which are able to explain 69–63% of the variability in lake‐water hydrogen and oxygen isotopic values. In addition to the geographic factors that can explain river and precipitation values, lake‐water isotopic values need factors related to local hydrologic and climatic characteristics to explain variability. Study results suggest that the spring snowmelt runs off the landscape via rivers and streams, depleting river and stream‐water isotopic values. By contrast, lakes receive seasonal contributions of precipitation in proportion to the seasonal fraction of total annual precipitation within their watershed. Climate change may alter the ratio of snow to rain fall, affecting water resource partitioning between rivers and lakes and by implication of groundwater. Paleolimnological studies must account for the multiple drivers of water isotopic values; likewise, studies based on the isotopic composition of fossil material need to distinguish between species that are associated with rivers versus lakes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
30.
Bedform geometry is widely recognized to be a function of transport stage. Bedform aspect ratio (height/length) increases with transport stage, reaches a maximum, then decreases as bedforms washout to a plane bed. Bedform migration rates are also linked to bedform geometry, in so far as smaller bedforms in coarser sediment tend to migrate faster than larger bedforms in finer sediment. However, how bedform morphology (height, length and shape) and kinematics (translation and deformation) change with transport stage and suspension have not been examined. A series of experiments is presented where initial flow depth and grain size were held constant and the transport stage was varied to produce bedload dominated, mixed‐load dominated and suspended‐load dominated conditions. The results show that the commonly observed pattern in bedform aspect ratio occurs because bedform height increases then decreases with transport stage, against a continuously increasing bedform length. Bedform size variability increased with transport stage, leading to less uniform bedform fields at higher transport stage. Total translation‐related and deformation‐related sediment fluxes all increased with transport stage. However, the relative contribution to the total flux changed. At the bedload dominated stage, translation‐related and deformation‐related flux contributed equally to the total flux. As the transport stage increased, the fraction of the total load contributed by translation increased and the fraction contributed by deformation declined because the bedforms got bigger and moved faster. At the suspended‐load dominated transport stage, the deformation flux increased and the translation flux decreased as a fraction of the total load, approaching one and zero, respectively, as bedforms washed out to a plane bed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号